Kontrol Penyiraman Tanaman Jagung dengan Variabel Cuaca, Intensitas Cahaya, dan Kelembaban Tanah



1. Tujuan [kembali]
  • Mempelajari aplikasi dari Encoder-Decoder.
  • Mempelajari Sensor-sensor yang berkaitan dengan kontrol penyiraman tanaman jagung.
  • Mempelajari dan mengaplikasikan rangkaian kontrol penyiraman tanaman jagung.
2. Alat dan Bahan [kembali]

BAHAN
  1. Resistor

    Resistor adalah komponen elektrikal pasif yang berfungsi sebagai hambatan dalam rangkaian listrik.
    Datasheet Resistor:


  2. Kapasitor

    Kapasitor adalah komponen elektrikal pasif yang berfungsi untuk menyimpan energi listrik dengan mengumpulkan muatan listrik pada dua permukaan yang terinsulasi dari masing-masing.
    Datasheet Kapasitor:

  3. Induktor.

    Inductor adalah komponen elektrikal pasif yang menyimpan energi pada medan magnetik ketika induktor dilalui arus listrik.
    Datasheet Induktor

  4. Dioda 1N4001

    Dioda adalah komponen elektronik pasif yang mengalirkan arus listrik secara searah. Dioda memiliki hambatan listrik kecil paada satu arah dan hambatan listrik yang sangat besar pada arah lain.
    Datasheet Dioda 1N4001



  5. Transistor NPN BC547

    Datasheet Transistor NPN BC547

  6. OP Amp OPA704PA


    Datasheet opamp


  7. Gerbang Logika NOT 7404


  8. Potensiometer
    Potensiometer adalah resistor variatif yang memiliki kontak listrik yang dapat digeser ataupun diputar untuk mengubah besar hambatannya.
    Datasheet Potensiometer:


  9. Soil Moisture Sensor

    Soil Moisture Sensor adalah sensor Kelembaban tanah. Soil moisture sensor bekerja dengan prinsip rangkaian pembagi tegangan, dimana sensor akan mengukur besar resistivitas tanah yang menjadi indikator seberapa lembab tanah yang akan diuji. Semakin besar kandungan air (tanah lembab), semakin kecil nilai resistivitas nya, dan sebaliknya.
    Spesifikasi:
    Power supply: 3.3v or 5v
    Output voltage signal: 0~4.2v
    Current: 35mA
    Pin definition:
     Analog output(Blue wire)
     GND(Black wire)
     Power(Red wire)
    Size: 60x20x5mm
    Value range:
     0 ~300 : dry soil
     300~700 : humid soil
     700~950 : in water

  10. Light Dependent Resistor
    LDR adalah komponen elektronika pasif yang berubah nilai hambatannya ketika dipaparkan cahaya. Nilainya berkurang semakin besar nilai intensitas cahaya yang dipaparkan.
    Datasheet LDR:

  11. Rain Sensor

    Rain sensor adalah sensor yang berfungsi untuk mendeteksi apakah sedang terjadi hujan ataupun tidak. Cara Sensor hujan bekerja adalah dengan prinsip pembagi tegangan. Apabila tetes air jatuh ke area sensor, maka rangkaian dari sensor menjadi lengkap, sehingga mengalir arus listrik dari Vcc ke area sensor lalu ke output sensor.

  12. Touch Sensor



    Touch sensor (Capacitive Touch Sensor) adalah sensor untuk mendeteksi sentuhan.
    Spesifikasi:
    Tegangan kerja : 2v s/d 5.5v (optimal 3V)
    Output high VOH : 0.8 VCC (typical)
    Output low VOL : 0.3 VCC (max)
    Arus Output Pin Sink (@ VCC 3V, VOL 0.6V) : 8 mA
    Arus Output pin pull-up (@ VCC=3V, VOH=2.4V) : 4 mA
    Waktu respon (low power mode): max 220 ms
    Waktu respon (touch mode): max 60 ms
    Ukuran: 24 mm x 24 mm x 7.2 mm

  13. 7 Segment Common Anode Display

    Datasheet:

  14. Decoder IC 7447
    Datasheet:

  15. Encoder IC 74147
    Datasheet:

  16. Relay

    Datasheet:

  17. Motor DC

    Spesifikasi:
  18. Standard 130 Type DC motor
  19. Operating Voltage: 4.5V to 9V
  20. Recommended/Rated Voltage: 6V
  21. Current at No load: 70mA (max)
  22. No-load Speed: 9000 rpm
  23. Loaded current: 250mA (approx)
  24. Rated Load: 10g*cm
  25. Motor Size: 27.5mm x 20mm x 15mm
  26. Weight: 17 grams
ALAT
  1. Power Supply
  2. Voltmeter DC
  3. Baterai

3. Dasar Teori [kembali]

RESISTOR 
Resistor merupakan komponen elektronika dasar yang digunakan untuk membatasi jumlah arus yang mengalir dalam satu rangkaian.Sesuai dengan namanya, resistor bersifat resistif dan umumnya terbuat dari bahan karbon. Resistor memiliki simbol seperti gambar dibawah ini :




Simbol Resistor
Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :




Dimana V adalah tegangan,  I adalah kuat arus, dan R adalah Hambatan.

Di dalam resistor, terdapat ketentuan untuk membaca nilai resistor yang diwakili dengan kode warna dengan ketentuan di bawah ini :





Sebagian besar resistor yang kita lihat memiliki empat pita berwarna . Oleh karena itu ada cara membacanya seperti ketentuan dibawah ini :
1. Dua pita pertama dan kedua menentukan nilai dari resistansi
2. Pita ketiga menentukan faktor pengali, yang akan memberikan nilai resistansi.
3. Dan terakhir, pita keempat menentukan nilai toleransi.

Rumus Resistor:
Seri : Rtotal = R1 + R2 + R3 + ….. + Rn

Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n

Paralel: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn

Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n



Dioda
Dioda adalah komponen elektronika yang terdiri dari dua kutub dan berfungsi menyearahkan arus. Komponen ini terdiri dari penggabungan dua semikonduktor yang masing-masing diberi doping (penambahan material) yang berbeda, dan tambahan material konduktor untuk mengalirkan listrik.Dioda memiliki simbol sebagai berikut :

Gambar Simbol Dioda

Cara Kerja Dioda
Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).

A. Kondisi tanpa tegangan
Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. Elektron-elektron tersebut akan menempati suatu tempat di sisi p yang disebut dengan holes. Pergerakan elektron-elektron tersebut akan meninggalkan ion positif di sisi n, dan holes yang terisi dengan elektron akan menimbulkan ion negatif di sisi p. Ion-ion tidak bergerak ini akan membentuk medan listrik statis yang menjadi penghalang pergerakan elektron pada dioda.

cara kerja dioda

B. Kondisi tegangan positif (Forward-bias)
Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif. Hilangnya penghalang-penghalang tersebut akan memungkinkan pergerakan elektron di dalam dioda, sehingga arus listrik dapat mengalir seperti pada rangkaian tertutup.

dioda tanpa tegangan

C. Kondisi tegangan negatif (Reverse-bias)
Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Pemberian tegangan negatif akan membuat ion-ion negatif tertarik ke sisi katoda (n-type) yang diberi tegangan positif, dan ion-ion positif tertarik ke sisi anoda (p-type) yang diberi tegangan negatif. Pergerakan ion-ion tersebut searah dengan medan listrik statis yang menghalangi pergerakan elektron, sehingga penghalang tersebut akan semakin tebal oleh ion-ion. Akibatnya, listrik tidak dapat mengalir melalui dioda dan rangkaian diibaratkan menjadi rangkaian terbuka.

kondisi tegangan negatif

3. Rumus

rumus

Transistor NPN
Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Transistor dapat berfungsi semacam kran listrik, di mana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya. Kapasitor NPN memiliki simbol seperti gambar di bawah ini:

Simbol Transistor NPN BC547


Terdapat rumus rumus dalam mencari transistor seperti rumus di bawah ini:
Rumus dari Transitor adalah :

hFE = iC/iB

dimana, iC = perubahan arus kolektor 

iB = perubahan arus basis 

hFE = arus yang dicapai


Rumus dari Transitor adalah :

Karakteristik Input
Transistor adalah komponen aktif yang menggunakan aliran electron sebagai prinsip kerjanya didalam bahan. Sebuah transistor memiliki tiga daerah doped yaitu daerah emitter, daerah basis dan daerah disebut kolektor. Transistor ada dua jenis yaitu NPN dan PNP. Transistor memiliki dua sambungan: satu antara emitter dan basis, dan yang lain antara kolektor dan basis. Karena itu, sebuah transistor seperti dua buah dioda yang saling bertolak belakang yaitu dioda emitter-basis, atau disingkat dengan emitter dioda dan dioda kolektor-basis, atau disingkat dengan dioda kolektor.

Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.

 Karakteristik Output

Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.

Gelombang I/O Transistor


Kapasitor




Kapasitor atau disebut juga dengan kondensator adalah komponen elektronika pasif yang dapat menyimpan energi atau muatan listrik dalam sementara waktu. Fungsi kapasitor (kondensator) di antaranya adalah dapat memilih gelombang radio pada rangkaian tuner, sebagai perata arus pada rectifier dan juga sebagai filter di dalam Rangkaian Power Supply (Catu Daya). Satuan nilai untuk kapasitor (kondensator) adalah Farad (F).

Rumus Kapasitas Kapasitor

 



 

                Rumus Kapasitor Keping Sejajar (Udara)





                Rumus Kapasitor Keping Sejajar (Medium)

 



 

                Rumus Kapasitas Kapasitor Bentuk Bola

 





Induktor





 Induktor atau dikenal juga dengan Coil adalah Komponen Elektronika Pasif yang terdiri dari susunan lilitan Kawat yang membentuk sebuah Kumparan. Pada dasarnya, Induktor dapat menimbulkan Medan Magnet jika dialiri oleh Arus Listrik. Medan Magnet yang ditimbulkan tersebut dapat menyimpan energi dalam waktu yang relatif singkat. Dasar dari sebuah Induktor adalah berdasarkan Hukum Induksi Faraday.

Kemampuan Induktor atau Coil dalam menyimpan Energi Magnet disebut dengan Induktansi yang satuan unitnya adalah Henry (H). Satuan Henry pada umumnya terlalu besar untuk Komponen Induktor yang terdapat di Rangkaian Elektronika. Oleh Karena itu, Satuan-satuan yang merupakan turunan dari Henry digunakan untuk menyatakan kemampuan induktansi sebuah Induktor atau Coil. Satuan-satuan turunan dari Henry tersebut diantaranya adalah milihenry (mH) dan microhenry (µH). Simbol yang digunakan untuk melambangkan Induktor dalam Rangkaian Elektronika adalah huruf “L”.

Simbol Induktor
Berikut ini adalah Simbol-simbol Induktor :

Simbol-simbol Induktor (Coil)

Simbol Induktor di proteus :





Nilai Induktansi sebuah Induktor (Coil) tergantung pada 4 faktor, diantaranya adalah :

Jumlah Lilitan, semakin banyak lilitannya semakin tinggi Induktasinya
Diameter Induktor, Semakin besar diameternya semakin tinggi pula induktansinya
Permeabilitas Inti, yaitu bahan Inti yang digunakan seperti Udara, Besi ataupun Ferit.
Ukuran Panjang Induktor, semakin pendek inductor (Koil) tersebut semakin tinggi induktansinya.
Jenis-jenis Induktor (Coil)
Berdasarkan bentuk dan bahan inti-nya, Induktor dapat dibagi menjadi beberapa jenis, diantaranya adalah :

Air Core Inductor – Menggunakan Udara sebagai Intinya
Iron Core Inductor – Menggunakan bahan Besi sebagai Intinya
Ferrite Core Inductor – Menggunakan bahan Ferit sebagai Intinya
Torroidal Core Inductor – Menggunakan Inti yang berbentuk O Ring (bentuk Donat)
Laminated Core Induction – Menggunakan Inti yang terdiri dari beberapa lapis lempengan logam yang ditempelkan secara paralel. Masing-masing lempengan logam diberikan Isolator.
Variable Inductor – Induktor yang nilai induktansinya dapat diatur sesuai dengan keinginan. Inti dari Variable Inductor pada umumnya terbuat dari bahan Ferit yang dapat diputar-putar.
Fungsi Induktor (Coil) dan Aplikasinya
Fungsi-fungsi Induktor atau Coil diantaranya adalah dapat menyimpan arus listrik dalam medan magnet, menapis (Filter) Frekuensi tertentu, menahan arus bolak-balik (AC), meneruskan arus searah (DC) dan pembangkit getaran serta melipatgandakan tegangan.

Berdasarkan Fungsi diatas, Induktor atau Coil ini pada umumnya diaplikasikan :

Sebagai Filter dalam Rangkaian yang berkaitan dengan Frekuensi
Transformator (Transformer)
Motor Listrik
Solenoid
Relay
Speaker
Microphone


OP-AMP

Simbol 
 

 
Berfungsi sebagai penguat atau pembanding tegangan input dengan output.
 



 

Karakteristik IC OpAmp

Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
Karakteristik tidak berubah dengan suhu
                                                                           
Karakteristik IC OpAmp

Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
Karakteristik tidak berubah dengan suhu


Inverting Amplifier



 Rumus:


NonInverting


 Rumus:


Komparator


Rumus:


Adder


Rumus:


Bentuk Gelombang


Gerbang NOT (IC 7404)
 



Gerbang NOT atau disebut juga "NOT GATE" atau Inverter (Gerbang Pembalik) adalah jenis gerbang logika yang hanya memiliki satu input (Masukan) dan satu output (keluaran). Dikatakan Inverter (gerbang pembalik) karena gerbang ini akan menghasilkan nilai ouput yang berlawanan dengan nilai inputnya . Untuk lebih jelasnya perhatikan simbol dan tabel kebenaran gerbang NOT berikut.




Pada gerbang logika NOT, simbol yang menandakan operasi gerbang logika NOT adalah tanda minus (-) diatas variabel, perhatikan gambar diatas.

Perhatikan tabel kebenaran gerbang NOT. Cara cepat untuk mengingat tabelnya adalah dengan mengingat pernyataan berikut. "Gerbang NOT akan menghasilkan output (keluaran) logika 1 bila variabel input (masukan) bernilai logika 0" sebalikanya "Gerbang NOT akan menghasilkan keluaran logika 0 bila input (masukan) bernilai logika 1"

Gerbang Logika XOR (IC 4030)


    Gerbang XOR adalah kombinasi dari gerbang-gerbang logika yang komplek yang digunakan untuk membentuk rangkaian logika aritmatika, komparator dan rangkaian untuk mendeteksi error. Gerbang logika Ex-OR disimbolkan seperti pada gambar berikut ini. Dalam bentuk aljabar Boolean, logika Ex-OR dapat dituliskan seperti berikut ini. Gerbang logika Ex-OR biasanya digunakan untuk membuat rangkaian operasi  aritmatika dan perhitungan khusus Adder dan Half-Adder. Gerbang logika Ex-OR dapat berfungsi sebagai “carry-bit” atau sebagai kontroller inverter, di mana salah satu input melewatkan data biner dan input lainnya berfungsi sebagai pemberi signal kontrol.
Tabel kebenaran untuk logika Ex-OR adalah





Decoder (IC 7447)



    IC BCD 7447 merupakan IC yang bertujuan mengubah data BCD (Binary Coded Decimal) menjadi suatu data keluaran untuk seven segment. IC 7447 yang bekerja pada tegangan 5V ini khusus untuk menyalakan seven segment dengan konfigurasi common anode. Sedangkan untuk menyalakan tampilan seven segment yang bekerja pada konfigurasi common cathode menggunakan IC BCD 7448. 


    IC ini sangat membantu untuk meringkas masukan seven segmen dengan jumlah 7 pin, sedangkan jika menggunakan BCD cukup dengan 4 bit masukan. IC BCD bisa juga disebut dengan driver seven segment. Berikut konfigurasi Pin IC 7447.

Konfigurasi Pin Decoder:


a. Pin Input IC BCD, memiliki fungsi sebagai masukan IC BCD yang terdiri dari 4 Pin, nama     pin masukan BCD dilangkan dengan huruf kapital yaitu A, B, C  dan D. Pin input berkeja    dengan logika High=1.

b. Pin Ouput IC BCD, memiliki fungsi untuk mengaktifkan seven segmen sesuai data yang    diolah dari pin input. Pin output berjumlah 7 pin yang namanya dilambangkan dengan    aljabar huruf kecil yaitu, b, c, d, e, f dan g. Pin Output bekerja dengan logika low=0. Karena itulah IC 7447 digunakan untuk seven segment common anode.

c. Pin LT (Lamp Test) memiliki fungsi untuk mengaktifkan semua output menjadi aktif low,        sehingga semua led pada seven segmen menyala dan menampilkan angka 8. Pin LT akan aktif jika diberi logika low. Pin ini juga digunakan untuk mengetes kondisi LED pada seven segment.

d. Pin RBI (Ripple Blanking Input) memiliki fungsi untuk menahan data input (disable input), pin RBI akan aktif jika diberi logika low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.


e. Pin RBO (Ripple blanking Output) memiliki fungsi untuk menahan data output (disable output), pin RBO ini akan aktif jika diberikan logika Low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.


Pada aplikasi IC dekoder 7447, ketiga pin (LT, RBI dan RBO) harus diberi logika HIGH=1 agar tidak aktif. Baik IC 7447 atau 7448 pada bagian output perlu dipasang resistor untuk membatasi arus yang keluar sehingga led pada seven segment bekerja secara optimal. Berikut ini rangkaian IC dekoder 7448 untuk konfigurasi seven segment common cathode.

Encoder 74147



    IC 74147 adalah IC encoder digital yang mengkodekan 9 jalur input menjadi 4 jalur output. Ini juga dikenal sebagai encoder prioritas Desimal ke BCD. Istilah encoder prioritas digunakan karena menyediakan pengkodean untuk jalur data urutan tertinggi sebagai prioritas pertama. Itu dibuat menggunakan teknologi Transistor-Transistor Logic (TTL). Ini adalah IC encoder 10 hingga 4. Pada artikel ini, kita akan melihat Diagram Pin IC 74147, Diagram Sirkuit Internal IC 74147, dan tabel Truth atau tabel fungsi IC 74147.

Here, you can see the truth table of IC 74147



Buzzer
Buzzer   adalah   sebuah   komponen   elektronika   yang   berfungsi   untuk   mengubah  getaran  listrik  menjadi  getaran  suara  getaran  listrik  menjadi  getaran  suara.  Pada  dasarnya  prinsip  kerja buzzer  hampir  sama  dengan  loudspeaker,  jadi  buzzer  juga  terdiri  dari  kumparan  yang  terpasang  pada  diafragma  dan  kemudian  kumparan  tersebut  dialiri  arus  sehingga  menjadi  elektromagnet,  kumparan  tadi  akan  tertarik  ke  dalam  atau  keluar,  tergantung  dari  arah  arus  dan  polaritas  magnetnya,  karena  kumparan  dipasang  pada  diafragma  maka  setiap  gerakan  kumparan  akan  menggerakkan  diafragma  secara  bolak-balik  sehingga  membuat udara  bergetar  yang  akan  menghasilkan  suara.  Buzzer  biasa  digunakan  sebagai  indikator bahwa proses telah selesai atau terjadi suatu kesalahan pada sebuah alat (alarm).

Cara Kerja Buzzer pada saat aliran listrik atau tegangan listrik yang mengalir ke rangkaian yang menggunakan piezoeletric tersebut. Piezo buzzer dapat bekerja dengan baik dalam menghasilkan frekwensi di kisaran 1 - 6 kHz hingga 100 kHz. Buzzer memiliki simbol seperti gambar di bawah ini :

Gambar Simbol Buzzer
LDR

LDR (Light Dependent Resistor) merupakan salah satu komponen resistor yang nilai resistansinya akan berubah-ubah sesuai dengan intensitas cahaya yang mengenai sensor ini. LDR juga dapat digunakan sebagai sensor cahaya. Perlu diketahui bahwa nilai resistansi dari sensor ini sangat bergantung pada intensitas cahaya. Semakin banyak cahaya yang mengenainya, maka akan semakin menurun nilai resistansinya. Sebaliknya jika semakin sedikit cahaya yang mengenai sensor (gelap), maka nilai hambatannya akan menjadi semakin besar sehingga arus listrik yang mengalir akan terhambat.







     Grafik


Sound Sensor
Modul sensor suara memberikan cara mudah untuk mendeteksi suara dan umumnya digunakan untuk mendeteksi intensitas suara. Modul ini dapat digunakan untuk keamanan, sakelar, dan pemantauan aplikasi. Akurasinya dapat dengan mudah disesuaikan untuk kenyamanan penggunaan. Ini menggunakan mikrofon yang memasok input ke amplifier, detektor puncak dan penyangga. 


         

                  Logo  Sound Sensor  di proteus: 





Grafik Respon Sensor Sound


Rain sensor


    Rain sensor atau sensor hujan adalah jenis sensor yang berfungsi mendeteksi terjadinya hujan atau tidak. Pada sensor ini, terdapat integrated circuit atau IC (komponen dasar yang terdiri dari resistor, transistor, dan lain-lain) komparator yang berfungsi memberikan sinyal berupa logika ‘on’ dan ‘off’. Sehingga ketika sensor mendeteksi adanya hujan, wiper mobil secara otomatis akan berfungsi tanpa harus mengaktifkan saklar manual.

    Sensor hujan juga mampu mengatur kecepatan wiper saat menyeka air hujan di kaca mobil, mulai dari posisi low, intermittent, hingga high speed. Pengaturan tersebut tergantung dari curah hujan yang menerpa kaca mobil.

Komponen Sensor Hujan

Sensor hujan bermaterial dari FR-04 dengan dimensi 5 centimeter (cm) x 4 cm berlapis nikel.
Lapisan modul pada sensor mempunyai sigar oksidasi sehingga tahan terhadap korosi.
IC komputer.
Terdapat potensiometer yang berfungsi mengatur sensifitas sensor.
Dua output digital dan analog.





Sensor PIR
Sensor PIR (Passive Infra Red) adalah sensor yang digunakan untuk mendeteksi adanya pancaran sinar infra merah. Sensor PIR bersifat pasif, artinya sensor ini tidak memancarkan sinar infra merah tetapi hanya menerima radiasi sinar infra merah dari luar.




Sensor ini biasanya digunakan dalam perancangan detektor gerakan berbasis PIR. Karena semua benda memancarkan energi radiasi, sebuah gerakan akan terdeteksi ketika sumber infra merah dengan suhu tertentu (misal: manusia) melewati sumber infra merah yang lain dengan suhu yang berbeda (misal: dinding), maka sensor akan membandingkan pancaran infra merah yang diterima setiap satuan waktu, sehingga jika ada pergerakan maka akan terjadi perubahan pembacaan pada sensor.

Sensor PIR terdiri dari beberapa bagian yaitu :

1. Fresnel Lens

Lensa Fresnel pertama kali digunakan pada tahun 1980an. Digunakan sebagai lensa yang memfokuskan sinar pada lampu mercusuar. Penggunaan paling luas pada lensa Fresnel adalah pada lampu depan mobil, di mana mereka membiarkan berkas parallel secara kasar dari pemantul parabola dibentuk untuk memenuhi persyaratan pola sorotan utama. Namun kini, lensa Fresnel pada mobil telah ditiadakan diganti dengan lensa plain polikarbonat. Lensa Fresnel juga berguna dalam pembuatan film, tidak hanya karena kemampuannya untuk memfokuskan sinar terang, tetapi juga karena intensitas cahaya yang relative konstan diseluruh lebar berkas cahaya.

2. IR Filter

IR Filter dimodul sensor PIR ini mampu menyaring panjang gelombang sinar infrared pasif antara 8 sampai 14 mikrometer, sehingga panjang gelombang yang dihasilkan dari tubuh manusia yang berkisar antara 9 sampai 10 mikrometer ini saja yang dapat dideteksi oleh sensor. Sehingga Sensor PIR hanya bereaksi pada tubuh manusia saja.

3. Pyroelectric Sensor

Seperti tubuh manusia yang memiliki suhu tubuh kira-kira 32 derajat celcius, yang merupakan suhu panas yang khas yang terdapat pada lingkungan. Pancaran sinar inframerah inilah yang kemudian ditangkap oleh Pyroelectric sensor yang merupakan inti dari sensor PIR ini sehingga menyebabkan Pyroelectic sensor yang terdiri dari galium nitrida, caesium nitrat dan litium tantalate menghasilkan arus listrik. Mengapa bisa menghasilkan arus listrik? Karena pancaran sinar inframerah pasif ini membawa energi panas. Material pyroelectric bereaksi menghasilkan arus listrik karena adanya energi panas yang dibawa oleh infrared pasif tersebut. Prosesnya hampir sama seperti arus listrik yang terbentuk ketika sinar matahari mengenai solar cell.

 *Grafik respon sensor PIR
1. Respon terhadap arah, jarak, dan kecepatan




Pada grafik tersebut ; (a) Arah yang berbeda mengasilkan tegangan yang bermuatan berbeda ; (b) Semakin dekat jarak objek terhadap sensor PIR, maka semakin besar tegangan output yang dihasilkan ; (c) Semakin cepat objek bergerak, maka semakin cepat terdeteksi oleh sensor PIR karena infrared yang ditimbulkan dengan lebih cepat oleh objek semakin mudah dideteksi oleh PIR, namun semakin sedikit juga waktu yang dibutuhkan karena sudah diluar jangkauan sensor PIR.

2. Respon terhadap suhu 


Dari grafik, didapatkan bahwa suhu juga mempengaruhi seberapa jauh PIR dapat mendeteksi adanya infrared dimana semakin tinggi suhu disekitar maka semakin pendek jarak yang bisa diukur oleh PIR.

Sensor Soil Moisture


Soil Moisture Sensor (Sensor YL) adalah sebuah jenis sensor yang fungsinya adalah untuk mengukur kelembaban tanah, prinsip operasinya adalah mendeteksi kelembaban di sekitar tanah, meskipun secara teknis sensor ini tidak dapat mendeteksi kelembaban tanah.

 Sensor mengenakan dua konduktor yang di buat untuk mengalirkan arus melalui tanah yang di ukur kelembabanya dan kemudian sensor mulai membaca nilai resistansi untuk menentukan tingkat kelembabanpada tanah. Semakin banyak air di dalam tanah, semakin tinggi nilai hambatannya, dan semakin tinggi nilainya, semakin rendah hambatannya. Sensor kelembaban tanah di aplikasi Anda membutuhkan catu daya 5V dan tegangan output 04.2V.

Oleh karena itu, Soil Moisture Sensor di bagi menjadi dua bagian, yaitu satu papan elektronik dan yang lainnya probe yang di lengkapi dengan dengan dua potensio, fungsinya yaitu untuk pendeteksian kadar air. Ini termasuk sensor analogatau biasanya di sebut A0. Sensor akam mendeteksi dan mengirimkan nilai kelembaban dari tanaj tersebut dalam bentuk persentase seperti berikut [5]:



Grafik respon




BAGIAN BAGIAN PIN SENSOR

Jika menggunakan pin Digital Output maka keluaran hanya bernilai 1 atau 0 dan harus inisalisasi port digital sebagai Input (pinMode(pin, INPUT)). Sedangkan jika menggunkan pin Analog Output maka keluaran yang akan muncul adalah sebauah angka diantara 0 sampai 1023 dan inisialisasi hanya perlu menggunkan analogRead(pin).
Potensiometer


Potensiometer (POT) adalah salah satu jenis Resistor yang Nilai Resistansinya dapat diatur sesuai dengan kebutuhan Rangkaian Elektronika ataupun kebutuhan pemakainya. Potensiometer merupakan Keluarga Resistor yang tergolong dalam Kategori Variable Resistor. Secara struktur, Potensiometer terdiri dari 3 kaki Terminal dengan sebuah shaft atau tuas yang berfungsi sebagai pengaturnya.



Relay
    Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A. Relay memiliki simbol seperti gambar di bawah ini :






Gambar Simbol Relay
   
Kapasitas Pengalihan Maksimum:


Cara Kerja Relay
Apabila coil diberikan arus listrik, maka akan timbul gaya elektromagnetik yang dapat menarik armature untuk merubah switch contact point.
Apabila coil tersebut sudah tidak dialiri arus listrik, maka Armature akan kembali lagi ke posisi Normally Close.
Umumnya, coil yang digunakan oleh relay untuk mengubah switch contact point ke posisi NC hanya membutuhkan arus listrik yang kecil.
7 Segment Anoda
   


    Seven segment merupakan bagian-bagian yang digunakan untuk menampilkan angka atau bilangan decimal. Seven segment tersebut terbagi menjadi 7 batang LED yang disusun membentuk angka 8 dengan menggunakan huruf a-f yang disebut DOT MATRIKS. Setiap segment ini terdiri dari 1 atau 2 LED (Light Emitting Dioda). Seven segment bisa menunjukan angka-angka desimal serta beberapa bentuk tertentu melalui gabungan aktif atau tidaknya LED penyususnan dalam seven segment.

    Supaya memudahkan penggunaannnya biasanya memakai sebuah sebuah seven segment driver yang akan mengatur aktif atau tidaknya led-led dalam seven segment sesuai dengan inputan biner yang diberikan. Bentuk tampilan modern disusun sebagai metode 7 bagian atau dot matriks. Jenis tersebut sama dengan namanya, menggunakan sistem tujuh batang led yang dilapis membentuk angka 8 seperti yang ditunjukkan pada gambar di atas. Huruf yang dilihatkan dalam gambar itu ditetapkan untuk menandai bagian-bagian tersebut.

    Dengan menyalakan beberapa segmen yang sesuai, akan dapat diperagakan digit-digit dari 0 sampai 9, dan juga bentuk huruf A sampai F (dimodifikasi). Sinyal input dari switches tidak dapat langsung dikirimkan ke peraga 7 bagian, sehingga harus menggunakan decoder BCD (Binary Code Decimal) ke 7 segmen sebagai antar muka. Decoder tersebut terbentuk  dari pintu-pintu akal yang masukannya berbetuk digit BCD dan keluarannya berupa saluran-saluran untuk mengemudikan tampilan 7 segmen.



Tabel Pengaktifan Seven Segment Display




Light Emitting Code (LED)
  Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna-warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya.

    Bentuk LED mirip dengan sebuah bohlam (bola lampu) yang kecil dan dapat dipasangkan dengan mudah ke dalam berbagai perangkat elektronika. Berbeda dengan Lampu Pijar, LED tidak memerlukan pembakaran filamen sehingga tidak menimbulkan panas dalam menghasilkan cahaya.  Oleh karena itu, saat ini LED (Light Emitting Diode) yang bentuknya kecil telah banyak digunakan sebagai lampu penerang dalam LCD TV yang mengganti lampu tube.

Simbol dan Bentuk LED (Light Emitting Diode)Bentuk dan Simbol LED (Light Emitting Diode)

Cara Kerja LED (Light Emitting Diode)

Seperti dikatakan sebelumnya, LED merupakan keluarga dari Dioda yang terbuat dari Semikonduktor. Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.

LED terdiri dari sebuah chip semikonduktor yang di doping sehingga menciptakan junction P dan N. Yang dimaksud dengan proses doping dalam semikonduktor adalah proses untuk menambahkan ketidakmurnian (impurity) pada semikonduktor yang murni sehingga menghasilkan karakteristik kelistrikan yang diinginkan. Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).

Cara kerja LED (Light Emitting Diode)

LED atau Light Emitting Diode yang memancarkan cahaya ketika dialiri tegangan maju ini juga dapat digolongkan sebagai Transduser yang dapat mengubah energi listrik menjadi energi cahaya




    
  

Motor DC
    


    Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), ArmatureWinding (Kumparan Jangkar), Commutator (Komutator)dan Brushes (kuas/sikat arang).

    Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti





Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.

Voltmeter

Volt meter DC merupakan alat ukur yang berfungsi untuk mengetahui beda potensial tegangan DC antara 2 titik pada suatu beban listrik atau rangkaian elektronika.


Ground

Ground Berfungsi sebagai untuk meniadakan beda potensial dengan mengalirkan arus sisa dari kebocoran tegangan atau arus pada rangkaian
Baterai
Baterai (Battery) adalah sebuah alat yang dapat merubah energi kimia yang disimpannya menjadi energi Listrik yang dapat digunakan oleh suatu perangkat Elektronik. Hampir semua perangkat elektronik yang portabel seperti Handphone, Laptop, Senter, ataupun Remote Control menggunakan Baterai sebagai sumber listriknya. Dengan adanya Baterai, kita tidak perlu menyambungkan kabel listrik untuk dapat mengaktifkan perangkat elektronik kita sehingga dapat dengan mudah dibawa kemana-mana. Dalam kehidupan kita sehari-hari, kita dapat menemui dua jenis Baterai yaitu Baterai yang hanya dapat dipakai sekali saja (Single Use) dan Baterai yang dapat di isi ulang (Rechargeable). Baterai simbol seperti gambar di bawah ini:


Gambar Simbol Baterai


Power Supply
    Power supply atau pencatu daya adalah sebuah alat elektronik yang berfungsi memberikan tegangan dan arus listrik pada komponen-komponen lainnya. Pada dasarnya power supply membutuhkan sumber listrik yang kemudian diubah menjadi sumber daya yang dibutuhkan oleh berbagai perangkat elektronik lainnya. Arus listrik yang disalurkan oleh power supply ini adalah jenis arus bolak-balik (AC). Namun karena kelebihan dari power supply ini, maka alat ini juga dapat mengubah arus bolak-balik (AC) menjadi arus searah (DC). Power supply memiliki simbol sebagai berikut :

Gambar simbol power supply
Generator DC


Generator DC merupakan sebuah perangkat mesin listrik dinamis yang mengubah energi mekanis menjadi energi listrik. Generator DC menghasilkan arus DC / arus searah. Generator DC dibedakan menjadi beberapa jenis berdasarkan dari rangkaian belitan magnet atau penguat eksitasinya terhadap jangkar (anker), jenis generator DC yaitu:
Generator penguat terpisah
Generator shunt
Generator kompon  
Konstruksi Generator DC 
Pada umumnya generator DC dibuat dengan menggunakan magnet permanent dengan 4-kutub rotor, regulator tegangan digital, proteksi terhadap beban lebih, starter eksitasi, penyearah, bearing dan rumah generator atau casis, serta bagian rotor. Gambar 1 menunjuk-kan gambar potongan melintang konstruksi generator DC.
trikueni-desain-sistem.blogspot.com/2014/08/prinsip-kerja-generator-DC.html
Konstruksi Generator DC

Generator DC terdiri dua bagian, yaitu stator, yaitu bagian mesin DC yang diam, dan bagian rotor, yaitu bagian mesin DC yang berputar. Bagian stator terdiri dari: rangka motor, belitan stator, sikat arang, bearing dan terminal box. Sedangkan bagian rotor terdiri dari: komutator, belitan rotor, kipas rotor dan poros rotor.
trikueni-desain-sistem.blogspot.com/2014/08/prinsip-kerja-generator-DC.html
Struktur Genertor DC
                                
Bagian yang harus menjadi perhatian untuk perawatan secara rutin adalah sikat arang yang akan memendek dan harus diganti secara periodic / berkala. Komutator harus dibersihkan dari kotoran sisa sikat arang yang menempel dan serbuk arang yang mengisi celah-celah komutator, gunakan amplas halus untuk membersihkan noda bekas sikat arang.

Prinsip Kerja generator DC
Prinsip kerja suatu generator arus searah berdasarkan hukum Faraday : 
trikueni-desain-sistem.blogspot.com/2014/08/prinsip-kerja-generator-DC.html
Dengan lain perkataan, apabila suatu konduktor memotong garis-garis fluksi magnetik yang berubah-ubah, maka GGL akan dibangkitkan dalam konduktor itu. Jadi syarat untuk dapat dibangkitkan GGL adalah : 
harus ada konduktor ( hantaran kawat ) 
harus ada medan magnetik
harus ada gerak atau perputaran dari konduktor dalam medan, atau ada fluksi yang berubah yang memotong konduktor itu.
trikueni-desain-sistem.blogspot.com/2014/08/prinsip-kerja-generator-DC.html
Prinsip Kerja Generator DC

Keterangan gambar :
Pada gambar Generator DC Sederhana dengan sebuah penghantar kutub tersebut, dengan memutar rotor ( penghantar ) maka pada penghantar akan timbul EMF. 
Kumparan ABCD terletak dalam medan magnet sedemikian rupa sehingga sisi A-B dan C-D terletak tegak lurus pada arah fluks magnet. 
Kumparan ABCD diputar dengan kecepatan sudut yang tetap terhadap sumbu putarnya yang sejajar dengan sisi A-B dan C-D. 
GGL induksi yang terbentuk pada sisi A-B dan sisi C-D besarnya sesuai dengan perubahan fluks magnet yang dipotong kumparan ABCD tiap detik sebesar :
trikueni-desain-sistem.blogspot.com/2014/08/prinsip-kerja-generator-DC.html
Untuk menentukan arah arus pada setiap saat, berlaku pada kaidah tangan kanan :
ibu jari : gerak perputaran 
jari telunjuk : medan magnetik kutub utara dan selatan 
jari tengah : besaran galvanis tegangan U dan arus I 
Untuk perolehan arus searah dari tegangan bolak-balik, meskipun tujuan utamanya adalah pembangkitan tegangan searah, tampak bahwa tegangan kecepatan yang dibangkitkan pada kumparan jangkar merupakan tegangan bolak-balik. Bentuk gelombang yang berubah-ubah tersebut karenanya harus disearahkan.

4. Langkah Percobaan [kembali]

1. Siapkan masing-masing alat dan bahan.
2. Buat Rangkaian Sesuai gambar yang akan diberikan pada proteus
3. Uji simulasikan.

5. Gambar Rangkaian [kembali]




6. Prinsip Rangkaian [kembali]

Rangkaian bekerja dengan cara sensor soil moisture membaca tingkat kelembaban dari tanah. Hasil pembacaan sensor lalu dimasukan ke rangkaian detektor. Apabila nilai kelembaban telah memenuhi nilai yang diinginkan, maka output akan dimasukan ke logic gate NOR.
Kemudian LDR membaca nilai intensitas cahaya dan dimasukan ke rangkaian detektor inverting. Apabila nilai intensitas cahaya yang diinginkan telah sampai, maka output akan dimasukan ke logic gate NOR.
Kemudian Bandingkan nilai kedua input NOR sehingga dihasilkan nilai output NOR yang diinginkan. 
Output dari NOR dimasukan ke Base dari Transistor NPN Untuk melakukan switchin dari relay sehingga rankaian motor DC (dalam hal ini pompa air) tersambung dan menyala.
Rain Sensor lalu membaa apakah cuaca sedang hujan atau tidak. Jika hujan, maka output diarahkan ke Basis Transistor NPN sehingga terjadi switching oleh relay yang menyebabkan rangkaian motor DC tidak terhubung dan tidak dapat menyala.
Untuk melakukan penyiraman manual, disentuh touch sensor sehingga menghasilkan output yang mengakibatkan switching relay untuk menghubungkan rangkaian motor DC.

7. Video [kembali]





Tidak ada komentar:

Posting Komentar